Comparing Friction Reducers for Use in AMPT Testing

Background

- NCHRP 9-29
 - Conclusion: variability of unconfined Fn was not suitable for rutting criteria developed in NCHRP 9-33
 - Suggestion: improved guidance for fabrication and use of friction reducers could reduce test variability
- Friction reducers for Fn in AASHTO TP 79-13
 - Two layers of latex membrane
 - Paste silicone grease at 0.25 ± 0.05 g

Objectives

- Investigate the effect of friction reducers on Fn test results and variability:
 - Latex (paste and spray silicone)
 - Teflon (single and <u>double without grease</u>)
 - <u>Reused latex</u> (paste silicone)
- Select appropriate friction reducers for Fn
- Confirm selected friction reducers not affecting E* results

Testing Plan - Fn

Test Procedure	Friction Reducer Type	Application Rate	
Unconfined Flow Number	Paste Silicone Latex	0.25 ± 0.02 g (baseline)	
(NCHRP 09-33 Method):	(DOW Corning 112 HP)	$0.15 \pm 0.02 \text{ g}$ $0.25 \pm 0.02 \text{ g}$ $0.10 \pm 0.02 \text{ g}$	
 Confinement: None 	Silicone Spray A Latex		
 Deviator: 600kPa (87 psi) 	(3M Dry Type) Silicone Spray B Latex		
 Contact: 30kPa (4.35 psi) 		0.25 ± 0.02 g	
 Temperature: 60.5°C 	(Permatex Wet Type)	0.15 ± 0.02 g	
	Teflon	Single 0.01-in sheet	
		Double 0.01-in sheet	

Notes:

1 Test Method x <u>8</u> Friction Reducers = <u>8</u> Sets of Flow Number Specimens

4 Replicates per Flow Number Test.

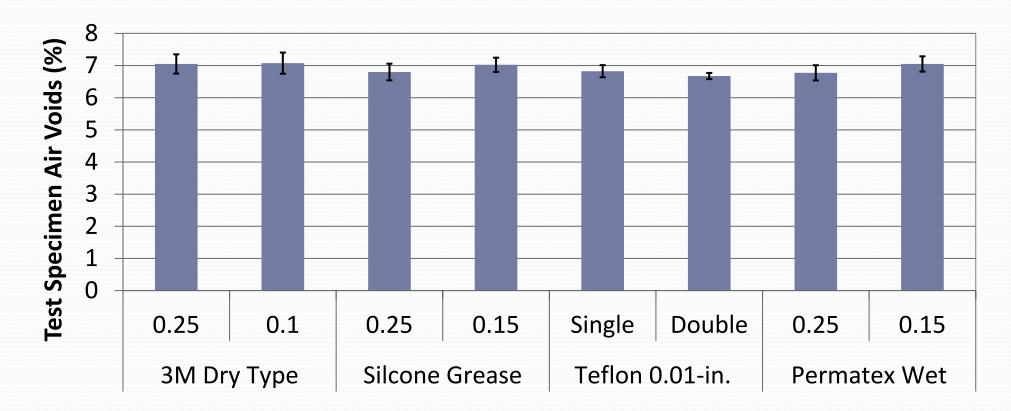
Testing Plan - Fn

Test Procedure	Friction Reducer Type	Application Rate			
Unconfined Flow Number	New Set of Silicone-	Paste silicone latex			
(NCHRP 09-33 Method):	Latex Reducers	@ 0.20 ± 0.02 g			
 Confinement: None 	Same Set of Friction				
 Deviator: 600kPa (87 psi) 	Reducers Reused in 2				
 Contact: 30kPa (4.35 psi) 	Weeks				
 Temperature: 60.5°C 					
Notes:					

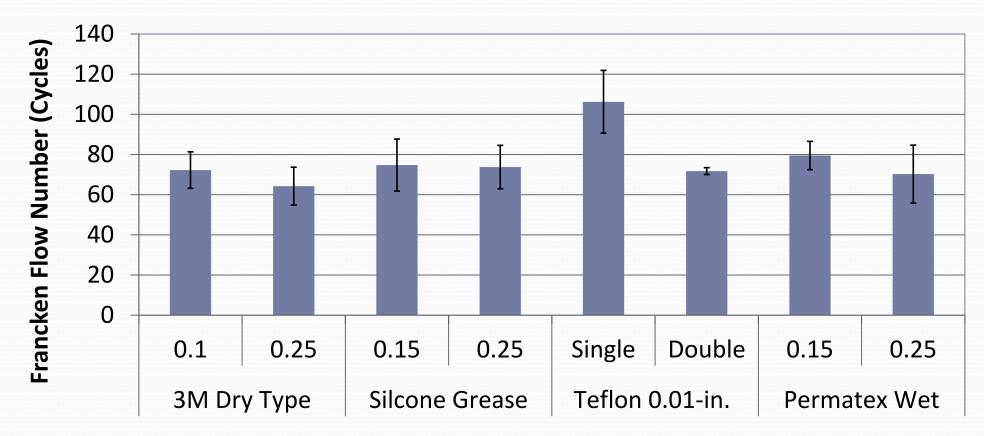
1 Test Method x 2 Friction Reducers = 2 Sets of Flow Number Specimens

4 Replicates per Flow Number Test.

Asphalt Mixture Used


- Dense-graded mix
 - 9.5-mm NMAS
 - PG 67-22
 - 20% RAP by weight of aggregate
 - Total AC = 5.50% (4.38% virgin binder; 1.12% RAP binder)
 - N_{des} = 60
 - Plant produced

Effect of Friction Reducers on Fn Test Results


Specimen Air Voids

Friction Reducer Type and Application Rate (gram)

Fn Test Results

Friction Reducer Type and Lubricant Rate (gram)

Statistical Analysis

 Source
 DF
 Adj SS
 Adj MS
 F-Value
 P-Value

 Mix ID
 7
 4537
 648.2
 5.39
 0.001

 Error
 24
 2884
 120.2
 120.2
 120.2

 Total
 31
 7422
 120.2
 120.2
 120.2
 120.2

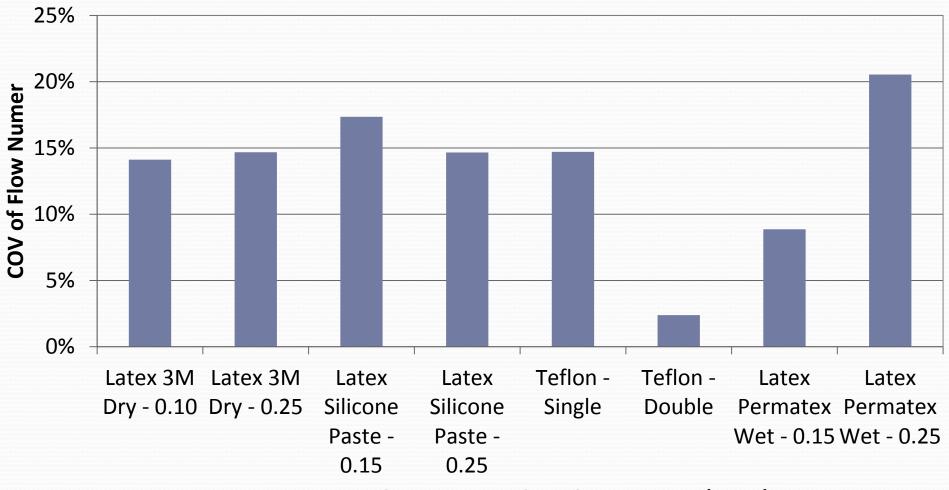
Model Summary

S	R-sq	R-sq(adj)	R-sq(pred)
10.9625	61.14%	49.80%	30.91%

Grouping Information Using the Tukey Method and 95% Confidence

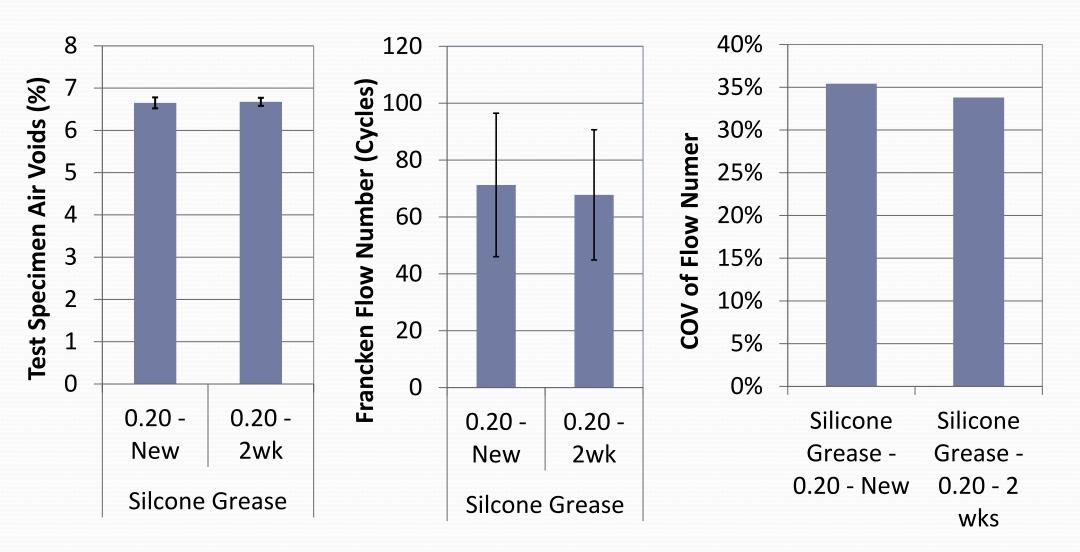
Mix ID	Ν	Mean	Grouping
Teflon - Single	4	106.25	A
Permatex Wet Type - 0.15	4	79.50	В
Silicone Grease - 0.15	4	74.75	В
Silicone Grease - 0.25	4	73.75	В
3M Dry Type - 0.15	4	72.25	В
Teflon - Double	4	71.75	В
Permatex Wet Type - 0.25	4	70.25	В
3M Dry Type - 0.25	4	64.25	В

Specimen Deformation



Untested

Single Teflon "bulging" Spray Silicone "constant deformation"


Double Teflon "bulging"

COV of Fn Results

Friction Reducer Type and Application Rate (gram)

Effect of Reusing Friction Reducers

Findings

- Fn test
 - Single-Teflon friction reducers yielded higher Fn results
 - Double-Teflon and latex friction reducers did not statistically affect Fn results
 - Both single-Teflon and double-Teflon friction reducers showed "bulging" effect
 - Reusing friction reducers once did not statistically affect Fn results
- E* test
 - Single-Teflon and latex friction reducers did not statistically affect E* results

at AUBURN UNIVERSITY

Recommendations

- Only 2-layer latex friction reducers be used for Fn test
 - Paste silicone, dry-type silicone spray, or wet-type silicone spray
 - Application rate: 0.20 ± 0.05 g
- Latex or single-Teflon friction reducer be used for E* test
 - For a latex friction reducer, any of the silicones can be used and application rate is 0.20 ± 0.05 g
- A study be conducted to determine if the same set of friction reducers can be used to test one set of Fn or E* specimens

Acknowledgments

 This inter-laboratory study is sponsored by AMPT Pooled Fund Study TPF-5(178)

